首页> 外文OA文献 >Convergence of iterative methods based on Neumann series for composite materials: theory and practice
【2h】

Convergence of iterative methods based on Neumann series for composite materials: theory and practice

机译:基于Neumann级数的复合材料迭代方法的收敛性   材料:理论与实践

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Iterative Fast Fourier Transform methods are useful for calculating thefields in composite materials and their macroscopic response. By iterating backand forth until convergence, the differential constraints are satisfied inFourier space, and the constitutive law in real space. The methods correspondto series expansions of appropriate operators and to series expansions for theeffective tensor as a function of the component moduli. It is shown that thesingularity structure of this function can shed much light on the convergenceproperties of the iterative Fast Fourier Transform methods. We look at a modelexample of a square array of conducting square inclusions for which there is anexact formula for the effective conductivity (Obnosov). Theoretically some ofthe methods converge when the inclusions have zero or even negativeconductivity. However, the numerics do not always confirm this extended rangeof convergence and show that accuracy is lost after relatively few iterations.There is little point in iterating beyond this. Accuracy improves when the gridsize is reduced, showing that the discrepancy is linked to the discretization.Finally, it is shown that none of the three iterative schemes investigatedover-performs the others for all possible microstructures and all contrasts.
机译:迭代快速傅立叶变换方法可用于计算复合材料中的场及其宏观响应。通过来回迭代直到收敛,在傅立叶空间中满足了微分约束,并且在真实空间中满足了本构律。该方法对应于适当算子的级数展开,以及对应于有效张量的级数展开,该展开量是分量模量的函数。结果表明,该函数的奇异性结构可以为迭代快速傅里叶变换方法的收敛性提供更多的启示。我们看一个导电正方形夹杂物的正方形阵列的模型示例,对于该模型,存在一个有效电导率的精确公式(Obnosov)。从理论上讲,当夹杂物具有零甚至负电导率时,某些方法会收敛。但是,这些数字并不能总是确认收敛的扩展范围,并且显示出在经过相对较少的迭代后精度会损失。当网格尺寸减小时,精度会提高,这表明差异与离散化有关。最后,研究表明,在所有可能的微观结构和所有对比方面,所研究的三种迭代方案均未优于其他方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号